Follow by Email

Wednesday, September 14, 2016

Thru the Homeless Camp in Search of Savannah's Mysterious Bilbo Mound: ...


Thursday, September 8, 2016

Ancient Effigy Mound From Unknown Archaic Civilization Found In Savannah...


Wednesday, September 7, 2016

mtDNA U: Human haplogroup that arose in a Neanderthal Population

I'm certain that mtDNA Haplogroup U resulted from the neanderthal occupation of SW Asia from 70k to 40k ago. 
Every time we've extracted the haplogroup from 20-28k remains, it has been in a Neanderthal Hybrid. These skeletons are so rugged and neanderthal like that if they hadn't extracted the DNA we might be calling them Neanderthals. 
It stays out of Africa until 20K ago and then expands rapidly from the area right across from Gibralter with the Ibero-Maurusian culture. 
21K ago there was a pure Neanderthal population living in the Rock of Gibralter. 
hap U is now the majority haplogroup in Europe, and has been there for 55k. 
No Hss were in Europe 55k ago. 
Ibero-Maurusians were described as being even more robust and neanderthal-like than Cro-Magnons. 
But here's the most damning evidence of all: 
Haplogroup U has shown a superiority to all other haplogroups in avoiding alcoholism due to childhood sexual abuse. 
In other words, any U woman who couldn't deal with neanderthal sexual abuse died or failed to reproduce. 

But she was not alone. The distribution and spread of Y Hap DE and E in Europe and Africa also show evidence of first arising inside of a Neanderthal population and being distributed  through Africa both around 38k ago and during the later Ibro-Maurusian.
Either DE's mother wasn't showing when the neanderthals invaded, or a Homo Sapiens Spaiens snuck into camp sometime after the invasion, or some males were allowed to live.
A hybrid male would have been weaker than pure neanderthals, but he could produce non-sterile males with mtDNA U, and mtDNA was being chosen over Neanderthal women by the neanderthals.


How the Origin Myth of the Hadza Explains Evolution

"The Hadza's oral history of their own past is divided into four epochs, each inhabited by a different culture. According to this tradition, in the beginning of time, the world was inhabited by hairy giants called the Akakaanebe or Gelanebe, "ancestors". The Akakaanebe did not possess tools or fire; they hunted game by staring at it and it fell dead; they ate the meat raw. They did not build houses but slept under trees, as the Hadza do today in the dry season. In older versions of this story, fire was not used because it was physically impossible in the earth's primeval state, while younger Hadza, who have been to school, say that the Akakaanebe simply did not know how. 
In the second epoch, the Akakaanebe were succeeded by the Tlaatlanebe, equally gigantic but without hair. Fire could be made and used to cook meat, but animals had grown more wary of humans and had to be chased and hunted with dogs. The Tlaatlanebe were the first people to use medicines and charms to protect themselves from enemies and initiated the epeme rite. They lived in caves. 
The third epoch was inhabited by the Hamakwabe "nowadays", who were smaller than their predecessors. They invented bows and arrows, and containers for cooking, and mastered the use of fire. They also built houses like those of Hadza today. The Hamakwabe were the first of the Hadza's ancestors to have contact with non-foraging people, with whom they traded for iron to make knives and arrowheads. The Hamakwabe also invented the gambling game lukuchuko. 
The fourth epoch continues today and is inhabited by the Hamaishonebe, "modern". When discussing the Hamaishonebe epoch, people often mention specific names and places, and can approximately say how many generations ago events occurred."[15] 

The Hadza received introgression from a hominid that split off from our lineage 1.2-1.3 million years ago. 
The last sweep of hairlessness (dark skin genes) occurred in Africa 1.2 million years ago. 
This means that 1.2 million years ago our African ancestors excluded anyone from the genome who did not possess hairlessness, and eventually only those with dark skin survived.
Any hominid living in Africa after 1.2 million years ago that did not have the dark skin gene was not a part of our ancestral genomic population and would have still been hairy. In order for a species to introgress , it has to spend some time outside of the genome it introgressess back into.
In other words, whatever gave the Hadza their 1.3 million year old introgresssion, it was hairy as a chimpanzee.
The Hadza's are "little people" dominated by Y Hap A and therefore closest to "Former Y Adam" (160k old A not 270k+ year old A00).  They average around 4 feet tall.
Homo ergaster averaged 6 foot 1 and possessed ape-like strength.

1.3 Million year old introgression = hairy homo ergaster, the Hadza's "hairy giants without fire"

Neighbor tribes of little people, and possibly the Hadza themselves, also have 700k introgression from a different source. 
About 700 thousand years ago, advanced skulls of homo erectus began to appear in Africa. Some scientist consider these the first examples of Homo sapien, or Archaic Homo Sapien. They've also been called African Heidelbergs and represent the next stage of hominid evolution after homo erectus.
So any 700 thousand year old introgression received by the Hadza inside Africa would have to be from them.  Bodo is our most likely African Ancestor circa 700k ago, so a species that split off from us 700 thousand years ago in Africa must have split directly from Bodo.

Populations of Archaic Homo Sapiens in Africa reached heights of 7 foot on average.
Again, the Hadza are 4 feet tall and in all likelihood, so were their ancestors.

700K split = Kabwe/ Bodo Archaic Homo Sapiens and the spread of Levaloise into Africa. 
700K Introgression = African "heidelbergs," the Hadza's "hairless giants with fire"

160K- Age of Hadza's A lineage, earliest date of proto-Microliths in Africa (Aterian culture, bows and arrows, first fossils of Homo Sapiens Sapiens in Africa). This culture competes with and eventually replaces the preceding Lavaloise industry.

Pygmies with a similar toolkit as the advanced Africans show up in the Narmada valley of India at this same time (150k ago). They also compete with and eventually replace a preceding Levaloise industry that's been entrenched there since 600k ago. 

The nearby Andaman Islanders have 600k Introgression.  
The 150K old Narmada pygmy has a shoulder bone almost identical to Andamanese islanders. 

All recovered fossils of the the Narmada pygmies  are anatomically modern, though robust. However, Western scientists still call them archaic homo sapiens because a complete skull has not yet been found. The difference between Anatomically modern and Archaic Homo Sapiens Sapiens in this case, and in most cases, is in the features of the face and skull. 

600K introgression- Indian heidelbergs, the Eastern branch of the "hairless giants with fire"

Do the Hadza remember the progression of hominids in Africa  so perfectly from 150K ago when they invented the Bow and Arrow or brought it to Africa from the Middle East? 

Or do they remember it from 35-65k K ago, when they were pushed into Sub-Sahara by Y Haplogroup E invaders? This would require that "hairy" and "hairless" giants survived in Sub-Sahara until the late Pleistocene.
ther eis evidence for the latter - Y Haplogroup A00 is over 300 thousand years old and likely introgressed from Archaic Homo Sapiens, and Iwu Eleru is a Heidelberg-type that dates from only 10,000 years ago.
But the former is a bit more controversial...we don't have any ergaster-like fossils from the Late Paleolithic in Africa.
The "hairy giants" could be the bipedal Bili Apes of the Congo, but that doesn't explain the 1.3 million year old introgression. 
Whoever the Hadza got it from 35- 60 thousand years ago, we don't have a fossil for the species.

Or did both of their "giants" exist into historic times?

 We are not their "giants," as a neighboring tribe with Bantu" haplogroups is often in their legends helping them fight the "hairless giants."TheHadza don't consider the Bantu or Europeans giants, because we're neither tall nor robust enough.

Some will say oral tradition can't be passed down for 30 thousand years. If that's the case then heidelbergs and ergasters must have been living in Africa until just last week, because there is no way the Hadza got their story so straight by daydreaming.


The Neanderthal Invasion Model

Sometime between 3 million and 1.8 million years ago, a part of our genetic population branched off from us and proceeded the rest of Early Homo out of Africa into the wide world. The proof of this is in the 3 million year old introgressed genes of certain people living in South Asia today and in the fossils the Hobbit found in Liang Bua in Indonesia. The Madrasian tools of India are also evidence of their movements across Eurasia, and we can guess that they were much like Homo Habilis and Homo Georgicus, if not Homo Habilis and Homo Georgicus themselves.
The point is, our ancestors were just like them, probably breeding with them, and not far behind them in their exodus out of Africa. It's just that sometime around 2.2 million years ago our clan developed a new brain gene that gave us a little bit of an edge over everybody else, and we started expanding faster than everyone else, incorporating everyone else into our population and culture while simultaneously outbreeding them. The first evidence we find of this expansion is Homo Ergaster, who appears simultaneously with a more advanced type of tool in Eastern Africa around 1.8 million years ago.
Researchers call part of this expansion the Acheulian, but it extended far beyond the area where that tradition is found.
Those early hominids who proceeded us out of Africa were mostly assimilated in the wave of our expansion, but  some of them managed to avoid  it and lived separately from our direct ancestors in South Asia and SE Asia until the late paleolithic or possibly even historic times. We call these the Hobbit in South-East Asia and Homo Vanara when referring to the group in South Asia, after the Vedic word for the forest dwelling ape-men of southern India.
Shortly after the appearance of Homo Ergaster in Africa, Acheulian tools appear in India. However, the older tools traditions persist in South Asia alongside the newer ones, and there are no fossils of either proposed species from this time. The fossil of Homo erectus modjokertensis shows up on Java, but the Phase I lithic industry there is akin to neither of its Western counterparts and this might be due to a difference in resources. The hominid was a child when it died, and therefore not fully developed, but its morphology seems intermediary between specimens like Georgicus and Habilis and later homo erectus

Fossils of the sister species of homo ergaster, homo erectus, show up in South East Asia around 1.4 million years ago . While some of the Javan fossils seem even more advanced than homo ergaster, others harken back to Modjokertensis, Georgicus, Habilis, and even the Australopithecines. Contemporary specimens of this age from Africa are rarely referred to as ergaster anymore, but take on the erectus moniker as well. Sometimes the term is used is Homo eregasterectus.
But from 1.4 to 1 million years ago, Africa looks to have been all but abandoned, at least for intermittent periods on that probably coincide with 41 thousand year temparature cycles. There are no fossils and few tools to mark the presence of eregasterectus, and this may coincide with hot periods during an interglacial when the Sahara expanded to make at least the northern and eastern part of the continent inhospitable. However, we know that Africa was not completely devoid of the species, because between 1.3 and 1.2 million years ago, a population of Homo ergasterectus separated itself from our gene pool and remained there until it was assimilated by the Sub-Saharan pygmies (or their immediate ancestors) over a million years later.
For the first time, hominid bones appear in Turkey and Spain. They are more aking to early Ergaster and Georgicus than to Homo ergasterectus, and are associated with Phase I Oldowan tools, which suggests to many that they were not part of the spreading culture that used Phase 2 or Acheulian tools.
The fossils on Java become more plentiful and diverse during this proposed "hot period," with the first finds of Java man. This subspecies is perhaps more closely related to Homo Ergasterectus than any other hominid of 1.4 million years ago, and is the type specimen for "Classic Erectus." However, Java man shared his island with other more basal forms, such as Meganthropus, which might share affinities with Homo Habils and even the Austrolipithecines, and other less robust specimens that resemble the earlier Modjokertensis, Georgicus, and Habilis.
It could be that what we are seeing on Java at this time is a snapshot of what was happeneing in the whole of Sundaland just before 1.4 million years ago, when the continent was above sea level. Jave would have been undesirable highlands until the sea rose, potentially stranding several species of SE Asian hominid together. In any event. around 1.1 million years ago yet another population separated itself from our direct ancestral genomic population. This is the Microcephalin D hominid, who we will call "Classic Ertectus," and it did not recombine with our own genome until around 37,000 years ago. Classic Erectus could also be responsible for the introgressed genes of the "Mystery Hominid" present in Denisovans, Malanesians, SE Asians, and some South Asians. This population must have had at least some genetic exchange with the Hobbit or Homo Vanara since "Mystery Hominid" introgression into the aforementioned populations always comes with genes from the 3 million year old divergence of Homo.
It can be seen as a far shore of the genomic wave in which Homo Ergasterectus brought  SRGAP2C to the Early Hominids spread across Eurasia who only had SRGAP2B. The Los Huesos, who's mtDNA is 450,000 years older that of the "Denisovan genome," may also be evidence of this sweep, as are the Denisovans themselves. Classic Erectus broke off about 1.1 million years ago, the mitochondrial ancestor of Los Huesos broke of around 1.05 million years ago, and the oldest (possibly introgressed) mtDNA haplogroups of Denisovan broke off about a million years ago.
However,  some Early Homo populations must have avoided the SRGAP2C sweep, because we have 3 million year old introgression without the accompanying "Mystery Hominid" or "Denisovan" in a few people living in Western South Asia today. Plus, we have the Hobbits of South East Asia who's morphology suggests an initial split from our ancestral population at around the same time.
The distribution of microcephalin D in modern humans suggests that the hominid that originally carried it lived somewhere between Papua New Guinea and Pakistan, since populations these two areas have the highest amount and its distribution across the globe points to an origin point in either Eastern South Asia or South East Asia.
Could it be that a population of Classic Erectus was stranded on Java or another Sunda island during a hot period of high seas roughly 1.1 million years ago, along with with a population of Hobbits?
If so, some Hobbits apparently escaped across the Wallace Line to Flores right before the hot period, or remained at least somewhat separate from Classic Erectus on another Sunda Island near Java until 780,000 years ago at the beginning of a glacial period when seas would have dropped again and fossils of the Hobbit's ancestors actuall start appearing on Flores.
So at this point, we have two species of Early Homo and one species of Classic Erectus living in South Asia and/or South East Asia. We have our genome of Homo Ergasterectus living Betwee or in South Africa and India. We have a species of Homo Ergasterectus living in African isolation, and we have a species of early Ergasterectus in Europe as well.
1 million years in the date of the diversion of the oldest of the Denisovan mtdna haplogroups, and these are only four hundred and fifty thousand years younger than the mtdna of Los Huesos. The nuclear DNA of Denisovan is branched off from us hundreds of thousands of years later. What this tells us is that Los Huesos females (and probably Classic Erectus females) were part of a genetic sweep that replaced Early Homo  mtDNA haplogroups across Eurasia, and Denisovan females are the result of a later part of that same sweep that replaced Early Homo in China. About 1.1 million years ago, a population branched off from our own drove all Early Homo mtDNA into extinction except for a few small population living in splendid isolation somewhere in S. or SE Asia. Another way to say this is that Denisovan women conquered China before the rest of Denisova did, but in actuality they were probably not true Denisovans until the defining nuclear DNA arrived.
At the same time that the earliest of denisovan mothers we're branching off from our own genomic population, a new brain mutation called SRGAP2D was born. It is probable that the mutation happened when one of our ancestors that were living somewhere in or between africa and South Asia at the time, but we cannot rule out the possibility that arose in one of the aforementioned subspecies of hominid. The gene is present in all modern humans, so if it enter breast before or round 350000 years ago we would not be able to tell whether it introgressed or not. Help the Common Man your modern humans neanderthals and nuclear denisovans where the next to me a year worldwide genomic sweep, we will assume that the former.
Heidelberg Man is the name most often used to describe this common ancestor. The Heidelberg man may have his roots in the SRGAP2D mutation that appeared 1 million years ago, fossils don't show up until around 600,000 years ago,
As expected, they show up on the outer borders of the area I've proposed for our own ancestors: the Narmada Valley in North West India and East Africa. Narmada Man and the Bodo and Kabwe craniums have a gigger brain size than any hominid that has come before them, and share traits with later "Classic Heidelbergs" from Africa and Eurasia. However, Homo Ergasterectus material is also appearing in east Africa at this time, having begun reappearing in the fossil record around 1 million years ago after a 400,000 year hiatus.
Only slightly later, the cranium of Ceprano Man is deposited in Europe. It is highly divergent from the antecessor fossils that precede it there and has more affinities with Classic erectus and its contemporary Narmada Man than it has with Kabwe and Bodo, but shares a resemblance to later Classic Heidelberg.
This bears all the markings of a diffusion of an advanced hominid from South West Asia or the Middle East, who we will call Classic Heidelberg.

Speaking of the ancestral population that loud between africa europe central Asia and India drum a million years 2 sometime after 200000 years ago, I do not see that they look much like classic heidelberg. They were likely comparatively short, with a head shape more like classic erectus. Mixing wheel homo ergaster and Ergasterectus to the immediate Wells and North is probably what is classic heidelberg the tall stature, more rounded cranium, and neonatal face as it radiated into Africa and Europe. It may also heidelberg interred europe from northeast, germany and the British Isles had not yet made it with antecessor, goodwill in southern Europe previous and seems to be the word neanderthal. Perhaps even a separate group of early Heidelberg, Ceprano Man Man, entered from the southeast, and the three groups plus the hardships of a later Ice Age is what begat Classic Neanderthal in Europe. Nneka call me many signs of hybridization between 600000 and 250000 years ago in the fossil record, until Classic Neanderthal appears and becomes ubiquitous there.
The greatest evidence we have for them entergy the Los huesos specimen. It has mtdna from the earliest wave of denisovan expansion, but it's nuclear DNA is decidedly Neanderthal. Heidelberg entered Europe around 600,000 years ago and assimilated Antecessor, a sister species of "early Denisovan," and drove the earlier mtDNA haplogroups there to extinction.
Neanderthal/ Denisovan mtdna split off from our own about 840000 years ago, and then split into Neanderthal and Denisovan respectively about 640,000 years ago, suggesting a period of isolation of 200 thousand years, probably somewhere in Central Asia, which is inhabited intermittently during this period depending on glaciation and climate. It is also likely that a population from this group made its way into Pakistan and India during this time, or was already there to begin with, judging from the similarity of Neanderthal and western S. Asian lithics and the current distribution of neanderthal genes in modern humans.
Rather than saying that neanderthals and the larger part of denisovans broke away from Hss 840,000 years ago, it may be more useful to say that we broke away from them it, and lived in an area that encompassed North and East Africa and South West Asia as our siblings spread out across the world.
700000 years ago yet another population Branch out from our own, heading West and South into greater Africa. It is likely that this subspecies of Heidelberg assimilated the aforementioned African archaic that had been living there since 1.3 million years ago, as introgression from the group in pygmies often contains these older genes as well.
600,000 years ago another group split off from Heidelberg, heading East. Their genes are now only found at low levels in the Andaman islanders. The appearance of "pygmy heidelbergs" in northern India around 150,000 years ago may herald their arrival.
400000 years ago one group of Heidelberg left our gene pool and migrated into Subsaharan or West Africa and is represented by the later introgressed Y Haplogroup A00, which is today only found in a handful of people with ancestry from that region. It is separated by 200 thousand years from the haplogroups of the rest of modern man, suggesting 200 thousand years of haplogroup extinctions from which only two haplogroups among millions survived. Shortly after the divergence of this haplogroup, the tallest examples of Classic Heidelberg appear in Africa in the form of Rhodesian Man and Homo Sapiens Idaltu. Some populations are thought to have averaged 7 foot among males. African Ergaster happens to be the tallest member of the Genus Homo before African Heidelbergs such as Rhodesian man and Idaltu (all are 6'1+), while non-African Heidelbergs are the same height as the erectus that went before them (Antecessor and Los huesos are 6', all other non-African Erectus and "Heidelberg" range between 3' and 5'10, with 5'10 being an extreme rather than a population average). In evolutionary thought, it is considered easier to shrink than to grow, although I would guess that environment, gene exchange, and circumstance might also have something to do with it.
The last divergence from our from own direct ancestral population (that we know about) occurred between 250 and 350 thousand years ago and is evidenced in the mtDNA of an anatomically modern human dated 40-60 thousand years ago in Australia known as Mungo Man.
Anatomically humans show up in the fossil record until 160,000 years ago, and they are all in Africa, which might seem to contradict the DNA. Research agree that though they were both homo Sapien sapiens, neither our Mito eve nor that of Mungo Man were likely anatomically modern. Some hold that anatomically modern Homo Sapien Sapiens don't actually appear until around 120,000 years ago or later. How can it be that two seperate gene pools that were not anatomically modern to begin with both become anatomically modern by 45000 years ago? For that matter, since Y Haplogroup A00 split off from our own 400,000 years ago, when Homo Sapien Sapiens wasn't even around, how can A00 people living today be anatomically modern?
The answer is interbreding between the groups. According to john Hawks and the bBC program first Peoples, Anatomically modern humans formed from genetic interchange between several different groups of heidelbergensis. We know this because different groups of Archaic Humans living in or near Africa from 350 thousand to 90 thousand years ago have different pieces of the puzzle that coalesced to creat anatomically modern human morphology. The group that included the artist formerly known as Y DNA Adam, the group that contained Y Haplogroup A00, the group that contained Mitochondrial Eve, and the group that contained LM3 eve were all subgroups of Heidelberg, with different traits, and they came together to form the traits inherent in every living person today. Y Adam and Mito Eve just won the lineage marker part of the genome, there is no reason to believe that other groups didn't win other parts. Any introgression from the LM3 or A00 populations that happened before anatomically modern human came to be would not be seen as introgression, because everybody on Earth has them today. Too, unlike introgression from neanderthals and Denisovans, nuclear material from the A00 and LM3 populations would only be separated from our own nuclear material by a couple of hundred thousand years or less, and equidistant from that of Neanderthals and Denisovans, so there is even the possibility of introgression after the time in which they coelesced into AMH. We even have evidence for that in the form of a erroneous insert into 39% of modern human's own chromosome 11 that looks just like mtDNA from LM3's Eve. If not for this insert, scientists would not know that our own ancestors even bred with our Pacific sister species, leaving the possibility that there were still other extinct populations of Homo sapien sapiens and AMH that bred with us but remain undetected.
It is even a possibility that all of our Archaic Introgression stems from these "Ghost Population" having assimilated neanderthals, denisovans, and others before we assimilated them in turn.
The extreme of this is that all members of the Genus Homo should be considered Homo sapien sapiens, but because there was likely limited fertility between some of these groups and because there is cause for separation on anatomical grounds, not to mention the unlikelyhood that a modern human could successfully mate with a cloned Homo Habilis, I tend to disagree with this preference. However the various species and subspecies of the genus homo world without a doubt a part of an extended gene pool promise augmented and recombined many times over the past 3.5 million years.
90,000 years ago, LM3 may even still been a part of our own gene pool, and A00's population may not have yet recombined with it yet.
That's when a cold spell started pushing neanderthals into the Middle East and split our population into at least two parts. LM3 and possibly several Y and mtDNA haplogroups that survived into the present (Y Hap C and mtDNA M?) survived in South China where there is presence is known from 120,000 years ago, while the descendents of mito Eve (us) were limited to Africa. In a territory from Africa to Pakistan, and maybe into India, Neanderthal ruled and assimilated the AMH and Heidelberg remained in the region for the next 50 thousand years. we have evidence of this in not only the fossil record but from the introgressed genes of homo sapien sapiens found in the fossils of this self-same group of neanderthals, and their introgression into us.
This same cold spell may have opened up the land bridge to the Andaman Islands for the Early Heidelberg that is Andamanese Archaic Introgression. This subgroup of Heidelberg branched off from our own ancestors 600,000 years ago. By 150,000 years ago, a "pygmy" form of Heidelberg shows up in Northern India and lives for the next 30 thousand years or more alongside a taller but more gracile subgroup that had lived there for at least 600,000 years before. Their size and certain anatomical traits are almost identical to Andaman Islanders. Andaman islander Introgression may even be a combination of these two people's genes, with the 600,000 year old fossils, tools and introgressed genes being the taller Heidelbergs and the 150,000 year old tools and fossils being the Neanderthal Introgression in Andaman Islanders. It may also be that this group included women of the LM3 haplogroup, or a ghost population of Hss that carried the LM3 insert, because Andaman Islanders have it too. It could even have included  Y Haplogroup C and D and mtDNA M, but this is doubtful, and here is the reason: introgression is only a fraction of Andaman Islander DNA. The vast majority of it is from the Homo Sapien Sapiens genome, and their maternal and paternal haplogroups are from within the even more finite branches of Y haplogroup A and mtDNA Eve.  More importantly, they have all of the "updates" that make us human, unlike Indian Pygmy Heidelberg/Neanderthal or any Hominid that branched off from us 600,000 years ago would have. The dates just don't compute- C,D, and M are only around 60 thousand years old. their age would have to be multiplied by three to comply with the dates of the first pygmy Heidelberg's arrival in Northern India! Furthermore, the Andaman islanders are thought to have obtained their 600,000 year old genes only 35,000 years ago, and their Neanderthal genes not long before....and certainly not over 125,000 years before.
But what if the original population from which Andaman Islanders received their introgression was part Hss in the first place? What if in addition to neanderthal and 600,000 year old "Heidelberg genes" it also contained an equal or greater portion of genes from LM3 or Mito Eve? What if it contained Y Haplogroup A0? What if the shared cultural and physical traits of South East Asian Negritos and African pigmy's, such as steatopygia and the similarities between the two groups in cranial morphology as reported in the last study on the subject conducted in 1973.
What if the biggest difference between the negritos and pygmies and ourselves isn't the amount of neanderthal Introgression or admixture from 600,000 and 700,000 year old early heidelbergs. Maybe it's that they were never fully assimilated by the taller group of Homo Sapien sapiens who that once shared an enviroment with in the original homeland of Homo Sapien Sapiens, two populations enjoying two different niches and occasionally exchanging genes, until the Neanderthals drove both of us out.
It may even be that Y haps C and D and mtDNA M in Andaman Islanders comes from a handful of shipwrecked sailors who entered the gene pool sometime between 35,000 and 10,000 years ago.
More likely, however, is that they a group of Heidelberg/Neanderthal/Hss pygmies lived in Northern India, Southern China, and Indochina from 150,000 years ago to at least 45,000 years ago and shared the landscape and sometimes exchanged genes with a taller hybrid of heidelberg/ Hss hybrid that had experienced less introgression from Neanderthals. I say this because the taller specimens linked to Hss from this time and era are more gracile, and because the probable descendant Mungo Man is hyper-gracile and has supposedly less neanderthal introgression than other Hss specimens outside of Africa from a similar date.
An interesting sidenote is that Hss from both Japan and Australia during this period exhibit the practice of tooth knocking. The Japanese Hss have large denisovan like teeth and are Hyper-Robust like Denisovans and they are short and robust like the Indian Heidelberg pygmies, but the Australians are tall and lean. I suspect that the practice may have resulted from a problem with tooth development during adolescence in hybrids of the two groups, or in hybrids of the two groups and neanderthals or Asian hominids. The practice continued in Japan until the Neolithic Jomon Period, in Australia into the present, and back-migrated into Africa about 20,000 years ago within the late Aterian or Ibero-Maurusian cultures, possibly with Y Haplogroup DE and MtDNA M.
So it looks like we had two groups of Homo sapiens sapiens living in an area africa to indochina from around 150,000 years ago to 90,000 years ago. One exploded plains, savannas, and grasslands and was tall and gracile. The other exploited forests and was short and stocky. Ice sheets and Neanderthals kept them out of Europe and Central Asia and something kept them out of most of India, likely something closely related to neanderthals judging my the Mousterian tools found there. Something was also keeping both groups of Hss out of Sub-Saharan and West Africa, where A00 and Archaic African Introgression were waiting to be assimilated by people living there today. Indeed, archaic fossils persists in west Africa until 10,000 years ago.

A cold spell drove the Neanderthals into SW Asia and the Middle East, and separated the genome of LM3 and Negritos from the genome of Mito Eve and Pygmies. Before 90000 years ago, a few fossils of Homo Sapien sapiens in East Africa, China, and the Levant exhibit chins. After 90000 years ago, chins begin to pop up all over Africa and in Southern Neanderthals too. Some African examples dated between 70 thousand and 90 thousand years ago were considered neanderthals until the 1980s, when they were reassigned the Homo Sapien Sapiens classification due to a number of modern features. It looks for all the world like Neandertha/Hss hybrids from the borders of Africa and SW Asia are beginning an assimilation of the entire continent. The dates match up much well with the back-migration of Y Haplogroup BT, and with a second wave of DE and/or its offspring, basal y haplogroup E. The only Africans who seem to have escaped this assimilation are the pygmies, who likely had higher Malaria immunity due to their archaic introgression, and those who mixed with a population of Heidelbergs that contained A00. Both happened in Subsaharan or West Africa during the Upper Pleolithic, probably around 37,000 years ago.
Today, back-migrated Y haplogroup E makes up over 70% of men native to Africa and the vast majority of Africans outside of Subsaharan Africa possess neanderthal introgression. It is mainly only pygmies who have managed to avoid it, and they have introgression that likely serves them far better than a cold-bred hominid's would.

From 70000 years ago to about 45,000 years ago the Y Hap DE neanderthal/Hss hybrid males dominated most of SW Asia, Northern and Eastern Africa, and the Middle East. Their original mtDNA counterpart was likely N, but they also picked up some mtDNA M, possible from the North Indian Pygmies. Sometime around 20,000 years ago a group of them brought tooth-knocking and mtDNA haplogroup M into Africa, and at some point around this same time one of their groups reached the Andaman Islands carrying the assimilated genes of proto-negritos.
This may have been the result of the population in which de was dominant being split in half, as the genome of homo sapiens sapiens had been split in half by neanderthals before. The reason for this was either the emptying of Central asia and the middle East due to climactic conditions or the incursion of another hybrid group from India, the one that contained Y haplogroup FC.
The dispersal of Y Haplogroup C, probably from South Asia, begins around 60,000 years ago and continues into Eurasia and South east Asia. The dispersal of F begins about 45,000 years ago and does the same. My best guess is that C represents those South Asian Hss that bred with the short woodland Neanderthals of South Asia and that F represents those who bred with the taller neanderthals of South Asia. Hybrid vigor allowed both groups' expansions into larger India, assimilating the early neanderthals there who had already mixed with an incursion Microcephalin D hominids that were expanding in the wake of lower sea levels from South east Asia. This is why the Microcephalin D gene is most prevalent in populations dominated by F haplogroups and mostly absent in African and Asian groups dominated by E and D, the offspring of Y haplogroup DE. Assimilation of the 3 million year divergent Homo Varana probably didn't happen until 21 thousand years ago at the last glacial maximum, when Adam's bridge to Sri Lanka became dry again. The resulting hybrids are known as Balangoda man, and some of them seemed to have moved to SW of India itself where they live to this day.
The push of F and C into central Asia pushed neanderthal East and West, and in the the East they began assimilating their sister species Denisovan, who had already begun assimilating Early Homo some 300 thousand years before. Neanderthal like skulls have been found in Mongolia and near Biejing with neanderthal and other archaic features with dates as late as 9000 B.C. The Red Deer Cave people possess triats from Erectus, neanderthal, and Hss...along with a few that only they can boast. Neanderthal stone balls, previously only found in Europe, show up around 40 thousand years ago in China and continue into South East Asia no later than 27,000 years ago. This is why Northern Chinese, native Amnericans. and Papuans have more Neanderthal DNA than most Europeans: Neanderthal assimilated most of the Denisovan and the Microcephalin D populations before we got there, along with much of the genome of our Mungo Man brother LM3.
It also seems that neanderthals and other hominids liked our females better than their own, as their is evidence for Hss introgression into Neanderthals in some Asian specimens and our mtDNA haplogroups seem to preceed us into certain areas, such as Tibet and Europe, long before any of our surviving Y haplogroups get there. When we took the world back from Neanderthal, we must not have killed the women, or at least we didn't kill the women who looked like us.
But why would all of these  dominant neanderthal hybrids who took over the world except for african pygmies always be from an Hss haplogroup rather than a neanderthal one?  It may have something to do with mammal pattern infertility. In mammalian hybrids, the females are more likely to be fertile than the males. The lack of neanderthal genital introgression makes it probable that hybrids who inherited the blackneanderthal reproductive genes rather than their Hss parent's were less successful in producing offspring. The other genes missing from the Neanderthal genome in modern introgression have to do with eyesight and may have been a factor in the size of the occipital bun, which could result in birth complications. if Neanderthals were Blood Type O Negative as is supposed, it may be that they could only have one child with an Hss wiothout the aid of modern medicine. It might also be because homo Sapien sapiens was the first hominid that did not need to go into heat in order to procreate. This could explain other subgroups choosing Hss women over their own and the rapid expansion of Hss genes after the Toba catastrophe. We simply outbred them. It could also be that Hss has a more neonatal look than any hominid that preceded it. We were originally pygmies that were just too cute to kill, and our women were smoking hot!


Neanderthal Invasion Led to Hybridization

This is the model for my prehistoric fiction I use in order to reconcile the data that has been made available to me by scientific studies.

There were lots of different sub-groups of hominids 100 thousand years ago all over the "Old World."

Anatomically modern humans occupied Africa and SW Asia to the borders of India. However, there were areas in both places that AMHS did not occupy.

A massive radiation of neanderthal people and/or genes began around 90 thousand years ago, and extended into Africa and India.

The explosion of Toba slowed or even halted that Neanderthal radiation.
However, Neanderthals and their genes remained dominant in Europe and most of SW Asia until somewhere between 45 thousand and 70 thousand years ago.

Neanderthals occupation of SW Asia cut the genome of Hss in half, with mtDNA Eve in Africa and mtDNA LM3 in East Asia.
Possibly mtDNA M and Y hap C were in East Asia too, but another hominid was keeping Hss out of India. 
Another hominid was keeping Hss out of most of China and still another was keeping Hss out of most of SE Asia. 
Much of this population was assimilated by various Archaic Asian hominids as the world recovered from Toba.

There were two subspecies of hominid in South Asia. One is genomically considered Neanderthal but did not look like a Neanderthal. The other is an unknown species of early 
homo or austro that likely lived in Sri Lanka.

The next radiations of genes and peoples were from several "hybrid" populations.
The hybrid of Indian "Neanderthal"(Narmada Man) and Hss contained Y Hap F, among others.
The hybrid of SW Asian Neanderthal and Hss contained Y hap DE, among others 

I don't know which mtDNA haplogroups were contained in these radiations - the vikings screwed that map all to hell by trading in women.

The Y Haplogroup F wave slowly assimilated peoples in South Asia and South-Central Asia. They kept Y Hap D people out of India. Y Haplogroup F became dominant in the population 
and began to diverge into subgroups, extending into parts of SE Asia.

Y Hap DE and C slowly dominated everywhere else, pushing and assimilating neanderthals and "denisovans" and groups of 100% Hss people with the spread of their wave.

Y Hap A dominant groups in Africa sought refuge in badlands and mixed with the Archaic African Introgression hominid. No doubt the latter's resitance to Malaria helped in the new enviroment, and helped to keep the northerners out.
Y Hap B sought reguge in areas where the big bad genes of Idaltu Man still lingered, and he wasn't having any of that Neanderthal crap.
Hence we have Archaic African Introgression and Y Haplogroup A00 in Sub-Saharan Africa. 90% of Africans are Y Hap E and have Neanderthal Introgression. It's just that they've just had 60,000 years to decide which Neanderthal genes 
they wanted to keep, which explains their low levels of Neanderthal and Denisovan introgression. (Most Africans have neanderthal introgression, just not the ones in Sub-Sahara where Archaic African Introgression and Y Hap A00 are more common)

But there was another radiation coming, and that one involved the Homo Erectus Soloensis "Denisovan," Y Haplogroup K, and microcephalin D.

This Hybrid of Y Hap K Hss, Neanderthal, and the Microcephalin D hominid incubated in SE Asia (or South Asia) from 60 thousand to 25 thousand years ago. Then it finally invaded India and Central Asia, separating the Y Hap E people 
from the Y Hap D people and killing or out-competing most Y Hap DE people in Central Asia.
Also, central Asia has sporadic population in the Paleolithic, so it may be that F and DE had previously alternated occupation of most of it depending on conditions up until that time. They may have even sometimes met and mixed, hence 
the basal F and possible Y Hap DE* in Tibet and the Caucasus.

A later radiation of peoples and genes, either Mesolithic or Neolithic, involved ASPM-D and agriculture.

We have mostly been talking about cultural exchange between the SE and SW after 2500 B.C., but the Bilbo mound is actually during the Archaic Period, so I have been reading up on the Archaic today.
Looking at what I can find on the Archaic period in the SW, it didn't have as much pottery and favored large points over small points. I would tend to link it with the Paleoindians and Paleo-Siberians and Cromagnons that preceded each other in turn going back 40 thousand years before the Archaic period.
The Archaic SE (and Mesoameric?) has a lot of pottery and more midden mounds and stilt houses. So I would link them with the proto-austronesians and australoids before them, who had a similar lifestyle going back 40,000 years.
So big game hunters vs. boat people. There's a similar situation in Europe and the Middle East during the Mesolithic. China and Africa are a bit more complicated- the middens and stilt houses are there, but both lack a lot of Y Hap P big game hunter groups.
I would not expect to find much artificial cranial modification in NW N. American during the Archaic, except where SE or Mesoamerican cultural intrusion were also present... but I would definitely expect to find it in the SE. There's at least one example in Ga from this period, but I'm not sure of the earliest date in Mesoamerica and Florida.
I would expect the possibility of finding Y Hap C or Y haplogroups within K that are not P,Q, or R in the SE during this period, but I would be surprised if we found much in the SW. Especially if it was unaccompanied by the incursion of SE or Mesoamerican cultural artifacts.
While I don't doubt that these two complexes exchanged cultural material and genes during the Archaic Period, it looks to me like they mixed a lot more after 3500 B.C. or so. Maybe the biggest mix-up between them was even later, as we've already discussed on this thread how the Yuchi and others were supplanted in a reaction to Colonialism.
It sure would explain why the Yamacraw men were so tall and the Yamacraw women so short (if the colonial reports can be relied upon).


Why Mungo Man's Original DNA is Definitely Not Due to Contamination

"In 2001, mitochondrial DNA (mtDNA) from the Lake Mungo 3 (LM3) skeleton was published and compared with several other sequences. It was found to have more than the expected number of sequence differences when compared to modern human DNA (CRS).[22] Comparison of the mitochondrial DNA with that of ancient and modern Aborigines led to the conclusion that Mungo Man fell outside the range of genetic variation seen in Australian Aboriginal people, and was used to support the multiregional origin of modern humans hypothesis.[22][23] These results proved politically controversial, and several scientific concerns were raised over the validity of the results and analysis. With the consent of the Willandra Lakes World Heritage Area Aboriginal Elders Committee, a reanalysis was performed on LM3 and other ancient specimens from the area. The 2016 report of this study stated that only contaminating mtDNA of modern European origin was obtained from LM3, and it was uncertain if any of the DNA analysed in the 2001 study was ancient DNA. Reanalysis of the sequence reported in 2001, whether it represented ancient DNA or modern contamination, showed it to be akin to modern Aboriginal Australian sequences and thus inconsistent with the multiregionalist interpretation of the earlier study. The authors did recover ancient mtDNA from a distinct Willandra Lakes skeleton and determined it to be of haplogroup S2, of Aboriginal origin[24][25]"

Allow me to explain why the idea of European contamination is ludicrous. This particular mtDNA haplogroup is thought to have split off from our ancestral lineage at least 150 thousand years before the birth of mitochondrial eve. It would be easy enough to pass it off as a false result if we didn't have evidence of another member of the same Haplogroup that LM3's DNA belongs to. An mtDNA haplogroup that is ancestral to Mungo Man's iserted itself into Chromosome 11 of one of our own universal ancestors, and it is present in all populations and ethnic groups worldwide at a global percentage of 39%. This ancestral mtDNA haplogroup is frozen in time, no longer diverging as a normal mtDNA haplogroup would, so all 39% of modern humans have the same exact version. That version is from several versions BEFORE the divergence of it's descendant haplogroup, which was found in Mungo Man.
If it were European Heidelberg, how did an Asian Heidelberg's DNA get into a European?
What's more, the highest rates of the LM3 insertion on Earth are found in indigenous people of Japan, Papua new Guinea, and Columbia South America. These three people have been proven to share nuclear DNA that they do not share with any other people on earth, save a few other Austronesian populations in the Pacific. This common ancestor is not reflected in their mtDNA or Y DNA, but is only reflected in their nuclear DNA. The common ancestors of these three people assimilated a population that possessed the LM3 insert or mtDNA haplogroup LM3 itself. That population almost certainly lived somewhere in the Pacific, which is the common ground between these three populations. Sundaland and several other massive expanses of land existed in the Pacific before the end of the last Ice Age. And where is Mungo Man's ancestor from? That's right, got to be the Pacific. There's just no other way for him to get to Australia.
If a blurred or contaminated mistake from an extinct archaic from the Pacific looks not just like the mtDNA of extinct archaics from the Pacific, but like the extinct great-great-great-grandson of those extinct archaics from the Pacific... well that would be the craziest coincidence that world has likely ever seen.
So what's the better answer?
As John Hawks showed in the First Peoples documentary on BBC, Homo Sapien Sapiens was born not from one group of Heidelbergensis, but several subgroups of Heidelbergensis. The LM3 genome lived with us in or near Africa at one time, most likely around 150 thousand years ago. Without borrowing genes from Mungo Man here and there, we would not be anatomically modern. Without borrowing genes from us, neither would have been Mungo Man.

There were at least two genomes of Anatomically Modern Human living in the Upper Pleistocene, and none of them could have been Anatomically Modern without the others. What's more, none of them began as Anatomically Modern. They were borrowing and trading genes, and what we wound up with as modern traits is what these two or three groups preferred collectively in sexual partners.
After we obtained a bit more Neanderthal introgression than the LM3 genome had aquired, and after the explosion of Toba had severely diminished and scattered its population, we drove what remained into the Pacific and then to extinction, but not before taking everything we wanted from it.